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The  development  of  low-bandgap  nonfullerene  accept-
ors  and  wide-bandgap  polymer  donors  speeds  up  the  ad-
vance of organic solar cells (OSCs)[1−17]. Wide-bandgap copoly-
mers based on fused-ring acceptor units are ideal donor mater-
ials  due  to  their  low-lying  HOMO  levels,  high  hole  mobilities
and  complementary  light  absorption  to  nonfullerene  accept-
ors[18−25].  Currently,  high-performance  donors  with  18%
power  conversion  efficiencies  (PCEs)  belong  to  this  type.
Fig.  1(a)  summarizes  these  donors.  They  are  D18-series  co-
polymers  based  on  dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c]-
[1,2,5]thiadiazole  (DTBT)  unit[15, 16, 26],  PBQx-TF  and  PBQx-TCl
based  on  dithieno[3,2-f:2',3'-h]quinoxaline  (DTQx)  unit[17, 25],
and  PM6  based  on  benzo[1,2-c:4,5-c']dithiophene-4,8-dione
(BDD) unit[27]. However, the above building units require tedi-
ous  synthetic  routes,  thus  increasing  the  cost.  Efficient  yet
low-cost  copolymer  donors  are  highly  desired[13, 28, 29].  The
fused-ring  lactone  unit,  dithieno[3,2-b:2',3'-d]pyran-5-one
(DTP),  is  a  commercially  available  building  block,  which  can
be obtained via a few synthetic steps from cheap starting ma-
terials[30].  Previously,  our  group  first  reported  lactone  copoly-
mer donors L1, L2 and L3 based on DTP unit[20, 31].  PCEs up to
17.81% was achieved from L3-based ternary solar cells, demon-
strating  the  great  potential  of  lactone  copolymer  donors.  In
this  work,  copolymerizing  a  cost-effective  monomer  (4,8-
bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-
b']dithiophene-2,6-diyl)bis(trimethylstannane)  (ClBDT-Sn)[32]

with  DTP  monomer  produced  a  new  lactone  copolymer  L4.
Ternary  OSCs  with  L4  as  the  donor  and  N3[33] and  PC61BM  as
the acceptors offered a PCE of 18.10% (certified 17.7%).

L4 was synthesized via Stille copolymerization and the de-
tails  can  be  found  in  the  Supporting  Information.  The  num-
ber-average  molecular  weight  (Mn)  and  polydispersity  index
(PDI) are 51.8 kDa and 1.58, respectively. The absorption spec-
tra for L4 in chloroform and as a film are shown in Fig. S2. For
film,  L4  shows  an  absorption  onset  at  645  nm,  correspond-
ing to an optical  bandgap of  1.92 eV.  The light  absorption of

L4  is  complementary  to  that  of  N3.  Cyclic  voltammetry  (CV)
measurements  were  employed  to  estimate  the  energy  levels
(Fig. S3).  The highest occupied molecular orbital (HOMO) and
the  lowest  unoccupied  molecular  orbital  (LUMO)  levels  are
–5.52 and –2.95 eV for L4, respectively.

Solar cells with a structure of ITO/PEDOT:PSS/active layer/
PDIN/Ag  were  made  to  assess  the  performance  of  L4.  The
D/A ratio, active layer thickness and diphenyl ether (DPE) addit-
ive  content  were  optimized  for  L4:N3  cells  (Tables  S1–S3).
The  cells  gave  the  highest  PCE  of  17.16%,  with  an  open-cir-
cuit  voltage  (Voc)  of  0.844  V,  a  short-circuit  current  density
(Jsc)  of  26.43 mA/cm2 and a fill  factor (FF)  of  76.9% (Fig.  1(b)).
These  cells  have  a  D/A  ratio  of  1  :  1.4,  an  active  layer  thick-
ness  of  110  nm  and  0.5  vol%  DPE  as  the  additive.  Adding
small  amount  of  PC61BM  into  L4:N3  blend  improved Voc, Jsc

and  FF  simultaneously  (Table  S4).  The  L4:N3:PC61BM  (1  :  1.4  :
0.2)  ternary  cells  gave  the  highest  PCE  of  18.10%,  with  a
Voc of  0.850  V,  a Jsc of  27.07  mA/cm2 and  an  FF  of  78.7%.
The  best  ternary  cells  were  also  measured  at  the  National
Institute  of  Metrology  (NIM),  and  a  certified  PCE  of  17.7%
(Voc,  0.856  V; Jsc,  26.43  mA/cm2;  FF,  78.4%;  effective  area,
2.580 mm2) was recorded (Fig. S4). The external quantum effi-
ciency  (EQE)  spectra  indicate  that  after  the  addition  of
PC61BM,  the  EQE  at  455–600  nm  and  650–820  nm  increased.
The  EQE  maximum  increased  from  82%  for  binary  cells  to
88%  for  ternary  cells  (Fig.  1(c)).  The  integrated  photocurrent
densities  are  25.13  and  26.13  mA/cm2,  respectively,  consist-
ing  with Jsc.  The  enhancement  in Jsc and  FF  for  ternary  cells
suggests  the  improved  charge  transport  in  the  active  layer.
Hole and electron mobilities (μh and μe) were measured by us-
ing  the  space  charge  limited  current  (SCLC)  method  (Fig.  S5
and  S6)[34−42].  From  binary  to  ternary  blend  films, μh in-
creased  from  7.91  ×  10–4 to  9.23  ×  10–4 cm2/(V·s), μe in-
creased  from  5.58  ×  10–4 to  7.48  ×  10–4 cm2/(V·s),  and  the
μh/μe decreased  from  1.42  to  1.23  (Table  S5).  The  enhanced
charge carrier mobilities and the more balanced charge trans-
port  benefit Jsc and FF  for  ternary  cells.  The  active  layer  mor-
phology was studied by using atomic force microscope (AFM)
(Fig.  S7).  L4:N3:PC61BM  (1  :  1.4  :  0.2)  blend  film  is  smoother
than  L4:N3  (1  :  1.4)  film,  as  the  root-mean-square  rough-
nesses  (Rrms)  are  1.49  and  1.88  nm,  respectively.  Both  blend
films  present  typical  nanofibers  (diameter,  ~20  nm)  and fiber
bundles.
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In  short,  by  using  a  cost-effective  lactone  acceptor  unit
and a cost-effective chlorinated donor unit,  we developed an
efficient  wide-bandgap polymer  donor  L4.  L4  is  a  rare  donor,
featuring  high  performance  (>18%  PCE)  and  low  cost.  Lac-
tone polymer donors hold promise for solar cells. 
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